The Quake-Catcher Network: A Distributed Computing Seismic Network

Elizabeth S. Cochran
UC Riverside

Jesse F. Lawrence
Stanford University

Carl Christensen
Stanford University

Ravi Jakka
UC Riverside

Jenny Saltzman
Stanford University

Corrie Neighbors
UC Riverside

Project website: qcn.stanford.edu
• **The Goal:** To network computers with internal or USB-connected accelerometers for rapid earthquake detection.

• **The Method:** We use distributed computing to monitor sensors internal or connected to computers when they are not otherwise being used.
Distributed vs. Parallel Computing

Distributed Computing:

Parallel Computing:
Demo - Laptop Accelerometer

Significance
max=-30.01
min=0.00

Z-amp
max=301.67
min=176.33

Y-amp
max=65.00
min=43.17

X-amp
max=25.67
min=20.87

Small Tick Mark = 1 Second
Large Tick Mark = 10 Seconds

Demo Mode - With Live Sensor
Challenges:

Noise: Man-Made

Timing: NTP

Location: always changing
Earthquake Detection

- Probable earthquake detection when the QCN receives many triggers from a region
- Otherwise just people bumping their laptops
- For big earthquakes:
 - only strong vibrations will be detected
 - Only large earthquakes will cause consistent triggers across a region of the network
Trigger Map for the Last Month (Generated on March 05 2009 00:15:10 UTC)

Legend: 🖥️ = QCN participant laptop, 📡 = QCN participant USB sensor, 🌋 = Earthquake of minimum magnitude 4.1

Note: locations changed at the kilometer-level to protect privacy

Los Angeles Participants

USB sensors at San Jacinto High School
Reno Earthquakes Captured!
LA/Chino Earthquake Captured!
Desktop Network

- With a USB sensor, any computer can be turned into a strong motion seismometer with QCN software
 - Schools can use the software to educate students about earthquake & seismology
 - School sensors can be distributed evenly with population

USB Sensors Available! $5 for teachers

Subset of K-12 schools in LA Basin
Educational Outreach

What we provide:
- Classroom Demo software.
- Seismology related in-class activities.
- Classroom USB Sensor.
- Classroom BOINC Software.

Request Sensors at: qcn.stanford.edu
Science Benefit

- Shake Maps
- Buildings
- Rupture
- Structure
Eventual Goal: *Earthquake Early Warning*

M 5.6 (October 30, 2007)
Honshu, Japan

M 7.2 (August 16, 2005)
Alum Rock, California
Conclusions

- Distributed computing could be a hugely beneficial to seismology & other data-centered fields
 - Rapid earthquake detection techniques
 - Monitor all types of sensors, easily scalable

- Potential for Earthquake Early Warning Application!

- Great education and outreach opportunities!

More information @ http://qcn.stanford.edu